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Abstract

Temperature data from the COSMIC GPS-RO satellite constellation are used to study
planetary wave activity in both polar stratospheres from September 2006 until Novem-
ber 2008. One major and several minor sudden stratospheric warmings (SSWs) were
recorded during the boreal winters of 2006/2007 and 2007/2008. Planetary wave mor-5

phology is studied using space-time spectral analysis while individual waves are ex-
tracted using a linear least squares fitting technique. Results show the planetary wave
frequency and zonal wavenumber distribution varying between hemisphere and alti-
tude. Most of the large Northern Hemisphere wave activity is associated with the win-
ter SSWs, while the largest amplitude waves in the Southern Hemisphere occur during10

spring. Planetary wave activity during the 2006/2007 and 2007/2008 Arctic SSWs is
due largely to travelling waves with zonal wavenumbers |s|=1 and |s|=2 having periods
of 12, 16 and 23 days and stationary waves with s=1 and s=2. The latitudinal variation
of wave amplification during the two Northern Hemisphere winters is studied. Most
planetary waves show different structure and behaviour during each winter. Abrupt15

changes in the latitude of maximum amplitude of some planetary waves is observed
co-incident in time with some of the SSWs.

1 Introduction

Large amplitude planetary waves dominate the winter middle atmosphere and their in-
teraction with the zonal mean flow is a major driver of winter stratosphere dynamics20

(Andrews et al., 1987). Planetary wave amplitudes are larger in the Northern Hemi-
sphere than in the Southern Hemisphere due to larger themal and orographic forcing
(Andrews et al., 1987). Stratospheric waves generally propagate eastward relative to
the ground in the Southern Hemisphere (Hartmann et al., 1984; Shiotani et al., 1990),
while quasi-stationary waves dominate the Northern Hemisphere (Chshyolkova et al.,25

2005). However, planetary waves generally propagate westward relative to the zonal
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mean flow (Holton, 2004).
Planetary waves propagate upward from tropospheric sources (Hartmann et al.,

1984; Randel, 1987; Krüger et al., 2005). Several studies have shown the connection
between tropospheric and stratospheric planetary wave activity. Leovy and Webster
(1976) and Mechoso and Hartmann (1982) discussed the strong vertical coherence5

of travelling planetary waves. Randel (1987) used geopotential height below 1 hPa to
find a decrease in propagation time from the troposphere to stratosphere for higher
zonal wavenumber waves. Westward propagating waves with zonal wavenumber s=1
and s=2 were identified in the stratosphere using satellite data and shown to agree
with Rossby modes for an isothermal atmosphere (Hirota and Hirooka, 1984). Recent10

satellite datasets have enabled wave characteristics and propagation to be followed up
to the mesosphere and lower thermosphere (Hirooka, 2000; Palo et al., 2005).

Sudden stratospheric warmings (SSWs) are much more prevalent in the Arctic than
in the Antarctic due to the larger Northern Hemisphere planetary wave forcing (Manney
et al., 2005; Pancheva et al., 2008a). Indeed, only one major SSW has been recorded15

in the Antarctic, during spring 2002 (Newman and Nash, 2005). An increase in middle
atmospheric planetary wave activity is noticed prior to the onset of an SSW which pre-
conditions the atmosphere (e.g. Palo et al., 2005; Chshyolkova et al., 2006; Hoffmann
et al., 2007), leading to an upward and poleward motion of heat flux (Andrews et al.,
1987). Planetary waves interact dramatically with the background mean flow during20

the SSW, leading to a reversal of the meridional temperature gradient at 10 hPa for
minor warmings and additionally for major warmings, a reversal of the eastward flow
(Labitzke and Naujokat, 2000). Matsuno (1971) showed that SSWs can be explained
by the interaction of upward propagating transient planetary waves on the background
zonal mean flow. A downward circulation causing adiabatic heating in the stratosphere25

results from the deceleration of the eastward flow by planetary waves (Liu and Roble,
2002).

The stratosphere-mesosphere system is coupled via planetary wave propagation
during SSWs (Liu and Roble, 2005; Hoffmann et al., 2007; Pancheva et al., 2009a),
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which act to change the stratopause structure (Manney et al., 2008) and the nature
of waves in the mesosphere (Chshyolkova et al., 2006; Shepherd et al., 2007; Mur-
phy et al., 2007; Pancheva et al., 2008b). During the austral winter of 2002, multiple
planetary waves reached the mesosphere, weakening and eventually reversing the po-
lar night jet, thus changing wave transmission and breaking conditions (Krüger et al.,5

2005; Liu and Roble, 2005). SSWs alter the background stratospheric circulation and
thereby influence directly the gravity wave fluxes reaching the mesosphere. The west-
ward winds observed during major SSWs allow eastward propagating gravity waves
to reach the MLT region and deposit their momentum there (Dunkerton and Butchart,
1984). Gravity wave activity in the stratosphere is generally enhanced during SSWs10

(Duck et al., 1998; Ratnam et al., 2004; Alexander et al., 2009), although in the meso-
sphere, gravity wave activity depends upon the warming itself and the location of the
observations (Dowdy et al., 2007; Hoffmann et al., 2007).

The recent advent of GPS Radio Occultation (RO) satellite missions has resulted in
the collection of highly accurate (sub-Kelvin accuracy) and increasingly dense temper-15

ature profiles from near the surface to 40 km altitude (Kursinski et al., 1997; Tsuda
et al., 2000). The launch of the Constellation Observing System for Meteorology, Iono-
sphere and Climate Global Positioning System Radio Occultation (COSMIC GPS-RO)
satellites in April 2006 has resulted in towards 2000 profiles per day distributed about
the globe (Anthes et al., 2008). These profiles are distributed fully in longitude and local20

time, making them ideal for global scale wave studies (Alexander et al., 2008b). COS-
MIC data were used to show large planetary wave activity in the 2006 Antarctic early
summer, more consistent with winter-time activity (Shepherd and Tsuda, 2008). COS-
MIC data are also dense enough to quantify changes in gravity wave activity over short
time scales (on the order of several days) and in particular have been used to study25

gravity wave activity associated with recent Arctic SSWs (Alexander et al., 2009).
In this paper, we study planetary wave activity using COSMIC temperature data

between 15 km and 35 km altitude from September 2006 to November 2008. We use
two methods to study planetary waves in the Arctic (60◦ N–70◦ N) and Antarctic (60◦ S–
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70◦ S). Firstly, space-time spectral analysis provides a morphology of planetary waves
during this period and allows quantification and analysis of travelling and stationary
wave components. Wave periods, wave numbers and phase speeds are examined.
Then we extract individual waves from the temperature perturbations using a least
squares fitting method. From this we look at the height structure and periods of these5

waves through time. Lastly, we identify individual waves and study their latitudinal
distribution during the major and minor sudden stratospheric warmings of the Arctic
winters of 2006/2007 and 2007/2008.

2 Data analysis

2.1 COSMIC data10

The COSMIC version 2.0 dry temperature data product is used, which is derived from
the measured refractivity profile by neglecting humidity. Sufficient data for this analysis
are available from September 2006 onwards. The original GPS-RO data are available
at 0.1 km vertical resolution but they have an effective vertical resolution on the or-
der of 1 km in the lower stratosphere (Kursinski et al., 1997). Therefore the data are15

interpolated to the approximate real resolution of 1 km. The precision of the COS-
MIC refractivity is 0.7% at 30 km (Schreiner et al., 2007). The accuracy of the derived
temperature is better than 0.5 K (Kursinski et al., 1997). Only a small bias of 1–2%
between radiosondes and COSMIC at 25 km altitude was observed by Hayashi et al.
(2009), thus gravity wave and planetary wave activity observed with COSMIC agrees20

well with model results (Alexander et al., 2008a,b; Kawatani et al., 2009). COSMIC data
are available from near the surface to 40 km, although we consider altitudes 15 km–
35 km here to neglect humidity in the lower regions and to maintain accuracy at the
upper altitudes.
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2.2 Space-time power spectral analysis

The space-time spectral analysis method is a technique for studying planetary scale
waves in the atmosphere (Hayashi, 1971). This method allows the simultaneous sepa-
ration of the background field into eastward and westward propagating waves. Space-
time analysis has been used to study planetary waves from the mid-latitude surface to5

middle stratosphere (e.g. Mechoso and Hartmann, 1982; Speth and Madden, 1983; Hi-
rota and Hirooka, 1984; Hirooka and Hirota, 1985; Watanabe et al., 2008) and globally
in the MLT region (e.g. Garcia et al., 2005; Palo et al., 2007; Ern et al., 2009). Global
scale stratospheric equatorial waves such as Kelvin waves and mixed Rossby-gravity
waves have also been studied using this method (Wheeler and Kiladis, 1999; Randel10

and Wu, 2005; Alexander et al., 2008b; Ern et al., 2008).
For a fixed latitude, the temperature T , which is a function of longitude λ and time t,

can be expressed as a double Fourier expansion:

T (λ, t) =
∑
s

∑
±ω
Rs,±ω cos(sλ ±ωt +φs,±ω) (1)

where Rs,±ω is the amplitude, s is the zonal wavenumber, ω is the frequency and φ15

is the phase. The positive and negative signs correspond to eastward and westward
propagating waves respectively. The space-time power spectrum is given by (Hayashi,
1971):

Ps,±ω(T ) =
∑
∆ω

1
2
Rs,±ω (2)

where ∆ω indicates the summation over a particular frequency band. Practically, the20

Rs,±ω and φs,±ω are obtained by taking the FFT in longitude:

T (λ, t) =
∑
s

Cs(t) cos(sλ) + Ss(t) sin(sλ) (3)
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and using these Fourier coefficients as input for further FFTs in time:

Cs(t) =
∑
ω

As,ω cos(ωt) + Bs,ω sin(ωt) (4)

Ss(t) =
∑
ω

as,ω cos(ωt) + bs,ω sin(ωt) (5)

where the co-efficients As,ω, Bs,ω, as,ω and bs,ω can be related to Rs,±ω and φs,±ω (the
reader is referred to Hayashi (1971) for full details).5

There is significant stationary wave activity in the mid-latitudes. The standing (sta-
tionary) part of the variance can be shown to be (Hayashi, 1977):

Ys,ω(T ) =
(1

4
[Pω(Cs) − Pω(Ss)] + K

2
ω(CkSs)

) 1
2

(6)

where Kω is the co-spectrum. The travelling components are then given by:

Zs,±ω(T ) = Ps,±ω(T ) − 1
2
Ys,ω(T ) (7)10

As discussed by Hayashi (1982), the partitioning of spectra into travelling and stand-
ing wave components is based on the following assumptions and definitions:

1. The definition of the standing wave component is that part of the spectrum which
consists of coherent eastward and westward moving components which are of
equal amplitude.15

2. The definition of the traveling wave component is that part of the spectrum con-
sisting of eastward and westward moving components which are incoherent with
each other.

3. It is assumed that standing and traveling parts are incoherent with each other and
of different origin.20
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2.3 Planetary wave extraction

The space-time analysis provides a detailed overview of the contribution to the vari-
ance of planetary waves with different frequencies, wavenumbers and phase velocities.
However, the removal of the stationary wave components via Eqs. (6) and 7 leads to
an irreversible loss of the Fourier coefficients such that individual travelling planetary5

waves are unable to be recovered.
The large stationary wave activity may distort the often weaker travelling waves if they

are not considered simultaneously. Therefore, we extract individual planetary waves in
longitude and time by the simultaneous least-squares fitting of stationary and travelling
waves to the function (Pancheva et al., 2008b; Shepherd and Tsuda, 2008):10

Tm = T0 +
6∑
j=1

3∑
s=−3

As,j cos
(2π
τj
t − 2π

360
sλ − ψs,j

)

+
3∑
s=1

Bs cos
( 2π

360
sλ −φs

)
+ R (8)

where Tm is the modelled temperature, T0 the background temperature field, t is time
in days counting from t=0 on 1 September 2006 and R is the residual containing all
other wave periods, wavenumbers and noise. The first summation on the right hand15

side of Eq. (8) is the time-dependent travelling wave component, with amplitudes As,j
and phases ψs,j , while the second summation is the stationary wave component with
amplitudes Bs and phases φs.

The ground-based wave periods τ are determined from an initial wavelet analysis of
the eastward and westward components of |s|≤3 planetary waves (which are a combi-20

nation of stationary and travelling waves) extracted from the s–ω analysis. The main τ
are found to be 5, 8, 10, 12, 16 and 23 days, although the 5 day and 8 day waves are
generally quite small in amplitude. These periods are in good agreement with previous
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observations of planetary wave periods (Pancheva et al., 2008b, 2009a). The analysis
period is 46 days (twice the longest τ under consideration) and the least-squares fit-
ting is stepped forward in time by one day intervals. Positive s corresponds to eastward
propagating waves, while negative s corresponds to westward propagating waves. The
reconstructed model data only requires |s|≤2 to agree closely with the original COS-5

MIC temperature perturbations. We do not require the s=0 zonally symmetric waves
to obtain good model agreements (Shepherd and Tsuda, 2008), although these waves
are likely to be important at higher altitudes (Pancheva et al., 2007). The sum of the
amplitudes of R and waves with |s|=3 and s=0 (which are not needed in the recon-
struction) are insignificant. The wave phases ψs,i and φs are not considered further10

because of the limited altitude range of COSMIC data when compared to the vertical
wavelengths of planetary waves which are several tens of kilometres (Pancheva et al.,
2008b).

3 Morphology of the temperature anomalies

The temperature anomalies at 60◦ N–70◦ N are shown in Fig. 1a. These anomalies are15

calculated as the 28-month zonal mean profile (using data from July 2006 to October
2008) subtracted from the daily zonal mean profiles at the respective heights. In this
way the mean annual cycle is removed and this data length also includes one full QBO
cycle (Zhou et al., 2002; Alexander et al., 2008b). The anomalies are then normal-
ized to the standard deviation at different altitudes to exclude the effect of decreasing20

density, as displayed in Fig. 1b.
Warm temperature anomalies appear at the beginning of February 2007 and during

the entire month of March 2007 as well as in late January, early February and March
2008 centred on 30 km height (Fig. 1a), coinciding with the time of major stratospheric
warming and the final stratospheric warming events respectively. These signatures25

are more pronounced at 65◦ N–75◦ N, where the major stratospheric warming from
January and February 2008 shows a warm anomaly of as much as 15 K (not shown).
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These anomalies reach down to 20 km with the last stratospheric warming in March
2007 reaching down to 15 km before the lower stratosphere settles into its summer
condition.

The normalized temperature anomalies indicate a similar pattern but amplitudes are
about a factor of 10 smaller than the residuals (Fig. 1b). The cold anomalies are con-5

fined to the November–January period extending throughout the altitude range consid-
ered here. However, in 2006 and above ∼ 20 km this period is reduced to November–
December due to a warm anomaly associated with the stratospheric warming in Jan-
uary 2007. In 2007 the stratospheric warming signature with an amplitude of 0.6 K
can be seen embedded in the cold anomaly in February 2007. During the major strato-10

spheric warming in January–February 2008 the warm anomaly reaches 0.9–1.2 K. The
manifestation is more dramatic poleward, as expected (e.g. 65◦ N–75◦ N, not shown
here).

In the Southern Hemisphere the anomaly patterns are somewhat different (Fig. 2).
There is annual variability marked by broader warm seasonal anomalies than the cold15

temperature anomalies. The 2007 winter anomaly appears weaker and shorter in du-
ration than in the winters of 2006 and 2008. This is apparent both in the mapping of the
residual and normalized temperature anomalies. A distinct tilt with height is observed
(downward phase propagation), which is particularly apparent below 25 km altitude.

4 Planetary wave morphology20

4.1 Space-time spectra

At each altitude, COSMIC data are binned into grid cells with latitude width 10◦ and
longitude width 20◦ and temporal resolution of two days. (Note that this method in-
herently adds some noise to low s waves.) The two-day zonal mean temperature is
removed to form T ′. Unlike equatorial wave analysis, it is not necessary to separate the25

temperature data into symmetrical and anti-symmtrical components (Ern et al., 2009).
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Furthermore, the temperature spectra are not red so it is not necessary to divide the
results by a background spectrum (Wheeler and Kiladis, 1999; Alexander et al., 2008b;
Ern et al., 2008). The analysis period is 96 days, stepped forward in time by 32 days.
A Welch window is applied in time to this 96 day data set to minimize spectral leakage.
In order to minimize signal suppression, only the middle 32 day interval in each 96 day5

dataset is retained for further analysis. Henceforth we use the notation E1 to represent
any eastward s=1 planetary wave, W1 to represent any westward s=1 planetary wave
and so on. When discussing a planetary wave with a particular period, we use the
notation e.g. 23DE1 to refer to an s=1 eastward propagating wave with period 23 days.

The wavenumber-frequency s–ω spectra at 60◦ N–70◦ N calculated over the interval10

1 November 2006 to 4 November 2008 are shown in Fig. 3. The spectra are formed
from the average of the eight 96 day intervals during this period, each starting on
1 November, 1 February, 1 May and 1 August for both years, in a similar manner to
Speth and Madden (1983). The resultant slight overlapping of spectra is not signifi-
cant. Averaging the spectra over the eight intervals reduces the noise and uncertainty15

of the results. Waves with ground based periods of 4 days (the Nyquist period) to
32 days and |s|<9 are considered here. When considering ground-based frequencies,
as measured by COSMIC and other satellites, the location of a wave in wavenumber-
frequency space will not change with altitude under the assumption of a slowly vary-
ing background field despite changes in the background wind with altitude (Ern et al.,20

2008).
The s–ω power spectra for both stationary and travelling waves at 60◦ N–70◦ N and

30 km altitude is shown in Fig. 3a. The largest variance and thus largest wave activity
is due to waves with |s|≤2. The spectrum is approximately symmetrical with a near
equal amount of variance for the eastward and westward wave components. Most of25

the planetary waves with |s|≤2 have ground-based phase speeds cx of 2.5 m s−1 to
20 m s−1 and frequencies ω<0.15 cycles per day. The travelling waves are shown
in Fig. 3c (calculated from Eq. 7). A significant amount of the westward variance has
disappeared, indicating that there are a number of stationary waves withω<0.10 cycles
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per day (i.e. ground-based periods τ>10 days). Most travelling waves are eastward,
with ω < 0.10 cycles per day, |s|≤2 and cx<20 m s−1.

The s–ω power spectra at 60◦ S–70◦ S are slightly different from the Northern Hemi-
sphere spectra (Fig. 3b). When considering the total variance, there are clearly more
eastward waves than westward, as expected in the Southern Hemisphere (e.g. Hart-5

mann et al., 1984). The eastward side of the spectra is narrower than in the Northern
Hemisphere, with a higher concentration of variance at lower s. Wave speeds and pe-
riods are similar to the Northern Hemisphere. After removal of the stationary waves,
essentially only eastward travelling waves remain (Fig. 3d).

Spectra at other altitudes are also studied. As an example, the results from 15 km are10

shown in Fig. 4. A close inspection of the Northern Hemisphere (60◦ N–70◦ N) variance
distribution of all wave components in Fig. 4a reveals waves with a somewhat lower cx
and less symmetry at 15 km than 30 km. Removal of the stationary wave component
results in the complete absence of westward propagating waves with ω>0.07 cycles
per day and cx<−10 m s−1 (Fig. 4c). The 15 km spectra are not evenly distributed15

between eastward and westward components: there are more eastward waves with
higher cx and larger ω than in westward direction.

In contrast, the Southern Hemisphere s–ω power spectra at 15 km are nearly iden-
tical in shape to those at 30 km. The spectra at both altitudes show a preference for
eastward waves, which are primarily travelling (Fig. 4d), whereas the westward com-20

ponents are almost entirely due to stationary waves. Larger travelling wave variance at
s=2 and ω∼0.15 cycles per day is noticed at 15 km than at 30 km.

4.2 Seasonal wave activity

Zonal wavenumbers of s≥4 are indicative of tropospheric baroclinic waves (Randel,
1987; Watanabe et al., 2008), thus we consider only s≤3 here. Furthermore, the s–25

ω spectra in Fig. 3 show that nearly all of the power is associated with low |s| waves.
Hövmoller diagrams are reconstructed using these wave filtered regions (not shown) to
check that the filtering gives meaningful results when compared to the original binned
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temperature data. While results obtained for the |s|=3 waves are physically reasonable,
the total amplitudes are generally <2 K, making them insignificant compared to the
|s|=1 and |s|=2 waves, so they are not considered further.

The travelling planetary wave amplitudes As,j (from Eq. 8) for the |s|≤2 waves, being
the sum of the discrete periods τj are shown in Fig. 5 for the period September 2006–5

November 2008. As expected, large planetary wave activity is present during winter,
while it is almost completely absent during summer when the background wind speeds
u<0 m s−1. Intermittent bursts of planetary wave activity are noted during both winters,
most of which are related to the SSWs to be discussed below. Amplitudes of westward
propagating waves are generally less than those of the eastward waves. The time of10

the final warming of the winter polar stratosphere varies each year because it is depen-
dent upon pre-existing conditions in the stratosphere (Waugh and Rong, 2002). The
final warming is initiated by transient Rossby waves propagating upward from the tro-
posphere which affect the Arctic stratosphere and troposphere simultaneously (Black
et al., 2006), hence the near constant decrease in zonal wind speeds with altitude15

evident during the final spring warmings in Fig. 5.
The planetary wave amplitudes at 60◦ S–70◦ S are shown in Fig. 6. In the South-

ern Hemisphere, the eastward waves have much larger amplitudes than the westward
waves. The amplitudes of E1 and E2 are directly related to the background zonal
wind. Note in particular the downward propagation of eastward winds during winter20

and spring and the associated downward propagation of enhanced planetary wave
amplitude (especially visible during 2007). Eastward waves cease to exist when the
background wind speed is ∼0 m s−1. Compared to the Northern Hemisphere, rela-
tively small amounts of westward wave activity are seen during both springs.

4.3 Temporal variability of the dominant wave periods25

The time series for the discrete s, extracted via Eq. (8), are used to calculate wavelet
spectra in order to study the temporal variability of the dominant travelling wave periods
τ (see Sect. 2.3 above). A Morlet wavelet is used as the orthonormal wavelet because

14613

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/14601/2009/acpd-9-14601-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/14601/2009/acpd-9-14601-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 14601–14643, 2009

Planetary waves in
the polar

stratospheres

S. P. Alexander and
M. G. Shepherd

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the temperature perturbation data are amplitude-modulated sine waves. Specifically,
the Morelet wavelet ψ0(t) is a plane-modulated Gaussian function:

ψo(t) = π1/4e6i te−t
2/2. (9)

Amplitude and phase information can be extracted from the one dimensional time se-
ries because the Morelet wavelet is complex (Torrence and Compo, 1998). Data are5

zero padded to remove end wraparound effects prior to calculating the wavelet trans-
form. The wavelet power spectrum at 30 km and 60◦ N–70◦ N for travelling waves with
periods τ between 4 days and 32 days are shown in Fig. 7 for each of E1, W1, E2
and W2. The strongest wintertime E1 have τ∼16 days and τ>20 days during 2007 and
τ=12–16 days during 2008. The variance of the W1 waves is smaller and the strongest10

W1 have τ between 10 days and about 24 days during both winters. The E2 and W2
waves show similar levels of activity. A strong 16–20 day E2 wave peaks during early
February 2008, close in time to a lot of W2 activity with a variety of periods from 8 days
upwards. When these travelling wave plots are compared to the wavelet analysis of the
stationary and travelling components combined (not shown), the results are similar for15

most of the short period activity, but there is less variance at longer periods, indicative
of stationary waves.

The 60◦ S–70◦ S and 30 km altitude travelling planetary wave power spectra are
shown in Fig. 8. Large interannual variability in planetary wave activity between each
of the three springs is evident in the Southern Hemisphere. The dominant E1 have20

τ∼12–23 days. The substantially weaker W1 has largest variance around 16–23 days.
The E2 generally have shorter periods than the |s|=1 waves, often about 8–12 days.
In comparison, the very weak W2 are inclined to have τ>16 days. A large amount
of wave activity is observed during November and December 2006. These planetary
waves were studied in detail by Shepherd and Tsuda (2008) and this analysis agrees25

with the results presented in that paper. There is correspondingly little planetary wave
activity in November and December 2007, suggestive of the known inter-annual vari-
ability of the Southern Hemisphere stratosphere (Shiotani et al., 1993). While a 5 day
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wave is fitted to the data in Eq. (8), there is no variance significant at the 95% level for
the |s|≤2 components in either hemisphere.

5 Planetary wave activity during the Arctic sudden stratospheric warmings

5.1 Background dynamical fields5

Several sudden stratospheric warmings (SSWs) occurred during the Arctic winters of
2006/2007 and 2007/2008. Planetary wave activity preceding and during these warm-
ings is studied in detail using COSMIC data. Firstly, the UKMO background zonal mean
temperature and zonal mean zonal wind in 2006/2007 between 45◦ N and 85◦ N is dis-
played in Fig. 9a on the 10 hPa surface. We display UKMO data because the SSW10

definition involves 10 hPa dynamical fields (Labitzke and Naujokat, 2000), although
a check reveals COSMIC temperatures at 30–32 km to be essentially the same (not
shown). A reversal in meridional temperature gradient occurs in early January, early
February and late February/early March. Only the last of these is also associated with
a complete reversal in direction of the zonal mean zonal wind at 10 hPa to westward15

and as such is the only major SSW. The background fields between 1000 hPa and
1 hPa at 60◦ N–70◦ N are shown in Fig. 9b. An increase in temperature is noted during
the late February major SSW, while there is not a clear change in temperature during
the minor SSWs from this plot.

Similarly, the 45◦ N–85◦ N background fields during the winter of 2007/2008 at 10 hPa20

are shown in Fig. 9c. Four SSWs are evident: in late January, early February, mid
February and late February. Except for the mid-February SSW, the meridional tem-
perature gradient reversals are larger than those during the previous winter. The late
February SSW is classified as major as it is also accompanied by westward winds. Dur-
ing this SSW, zonal mean zonal winds peaked at between −20 m s−1 and −30 m s−1,25

14615

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/14601/2009/acpd-9-14601-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/14601/2009/acpd-9-14601-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 14601–14643, 2009

Planetary waves in
the polar

stratospheres

S. P. Alexander and
M. G. Shepherd

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

before returning to 10 m s−1 to 20 m s−1 in early March. Clear increases in temperature
occur during all of the SSWs (Fig. 9d).

The temperature perturbations from the zonal mean observed by COSMIC in the
latitude bin 60◦ N–70◦ N are calculated over two day intervals (independently) and are
shown as Hövmoller diagrams in Fig. 10a for the winter of 2006/2007 and Fig. 10d for5

2007/2008. Higher temperatures at 180◦ E occur during both winters, as a result of
the zonally asymmetric structure associated with the stationary s=1 Aleutian High and
corresponding low over Scandinavia (Pawson and Kubitz, 1996). Eastward propagat-
ing waves, extracted using Eq. (8), are clearly visible throughout both winters (Fig. 10b
and e). Westward propagating waves are strongest during February 2007 (Fig. 10c)10

and from late January 2008 onwards (Fig. 10f). Note the presence of the 0 m s−1 zonal
mean zonal wind in late February 2007 in Fig. 10a and late February 2008 in Fig. 10d.
Figure 10b and e show a large amount of E1 and E2 activity, with total amplitudes often
around 20 K. Westward waves are generally of lower amplitude (mostly <10 K), with
W1 dominating. Shorter E1 and W1 periods on the order of 10–14 days are apparent15

during January and February 2008, as noted in the wavelet analysis of Fig. 7.

5.2 Latitudinal distribution of planetary waves

The amplitudes of the dominant planetary waves at 30 km between 20◦ N and 80◦ N
during the 2006/2007 winter are shown in Fig. 11. Wave amplification occurs over a
wide latitude band. The SPW1 has its largest amplitude during the first minor SSW20

(Fig. 11a), suggesting it plays an important role in reversing the meridional tempera-
ture gradient (Fig. 9a). The 23DE1 planetary wave has local maxima in mid-December,
early February and late February (prior to the major SSW), while the 16DE1 has a sin-
gle maximum during January. A distinct change in the latitude of maximum amplitude
of the 16DE2 and 23DE2 occurs at the start of January, co-inciding with the first minor25

SSW. Before then, these waves are centred at 40◦ N, while afterwards the centre is
at 50◦ N. The SPW2 also shows a shift poleward during early January. It is the only
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planetary wave to reform signficantly after the late February major SSW. The eastward
waves likely pre-condition the stratosphere (Labitzke, 1981; Krüger et al., 2005) not
only for the major SSW in late February but are also likely to do so for the first minor
SSW in early January. The largest amplitude westward waves are the 23DW2 and the
23DW1. Both the 23DW2 and 23DW1 have a broad maximum throughout February5

(the 23DW2 centred on 50◦ N and the 23DW1 centred on 60◦ N) and both decay rapidly
in amplitude as the major SSW occurs. The 23DW1 has a number of other increases
in activity earlier in the winter, primarily before and during the first minor SSW.

The equivalent dominant planetary waves during winter 2007/2008 are shown in
Fig. 12. Note that the 12DE1 is displayed instead of the 23DW2 because the amplitude10

of the latter is small except for briefly in early February (see also Fig. 13h below). Large
SPW2 amplitude is observed throughout February, centred on 60◦ N, and decays with
the onset of the major SSW in late February. The 23DW1 also decays immediately prior
to the major SSW, yet reforms with greater amplitude upon its cessation. Decreases
in planetary wave amplitudes are also observed during the minor SSW of late January,15

during which time the 12DE1, 16DE1 and 16DE2 decay before reforming rapidly in
early February. The planetary wave amplitudes of the 23DE1 and 23DE2 components
are larger throughout January but do not regain their previous intensity after the minor
SSW. The 16DE1 and 16DE2 appear responsible for the minor SSW of early February
because of a short burst of enhanced activity during this time.20

5.3 Planetary waves at 60◦ N–70◦ N

The amplitudes of specific period planetary waves at 30 km reconstructed from the
data during the 2006/2007 winter are shown in Fig. 13a–d for 60◦ N–70◦ N. These have
been smoothed by a five-day running mean. Similar planetary wave activity is also
observed in the neighbouring latitude bin of 50◦ N–60◦ N (not shown, but apparent from25

Fig. 11). We focus on 60◦ N–70◦ N because it is inside the SSW definition latitude range
(Labitzke and Naujokat, 2000). The τ=5 day waves are not shown here because their
amplitudes are consistently <1 K.
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The SPW1 wave has a maximum amplitude of 15 K in early January 2007 before
steadily decreasing for the remainder of the winter (Fig. 13a). The 23DE1 planetary
wave has two maxima: the first in mid-December and the second in late February,
while the 16DE1 has a single maximum during January. E2 wave amplitudes are also
enhanced during February, with broad maxima for all of the 12DE2, 16DE2 and 23DE25

components (Fig. 13c), but the SPW2 varies little in amplitude throughout the winter.
Amplitudes of the W1 are generally less than E1. A doubling in amplitude of the 16DW1
occurs in mid-January and in late February/early March, whereas the 23DW1 ampli-
tudes behave in an opposite way. A strong increase in 23DW2 activity is co-incident
with the early February minor warming.10

The amplitudes of specific period planetary waves during the 2007/2008 winter are
shown in Fig. 13e–h. The behaviour of the SPW1 during 2007/2008 is similar to the
preceding winter, with a maximum in January and a steady decline thereafter. 12DE1
and 16DE1 waves are largest from early January until mid-February, after which the
major SSW occurs. The 23DE1 is amplified from early to mid-January, prior to the first15

minor SSW. The largest amplitude E2 wave during winter is the 16DE2, except during
the first minor SSW in late January, when a 23DE2 wave dominates. The SPW2 ex-
hibits different behaviour during 2007/2008 when compared to the previous winter. It
grows in amplitude from ∼2 K in mid-January to 5 K in early February, co-incident with
the second minor warming. There are large variations in the westward wave ampli-20

tudes during this winter. Local maxima in the 16DW1, 23DW1 and 23DW2 occur from
late January to early February. During the major SSW, increases in amplitude of the
23DW1, and the 16DW2 are most prominent.

6 Discussion

Properites of the dominant planetary waves present during the 2007 and 2008 SSWs25

are summarised in Tables 1 and 2 respectively. Anomalously large E1 activity from
waves with various periods preconditions the stratospheric circulation prior to most of

14618

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/14601/2009/acpd-9-14601-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/14601/2009/acpd-9-14601-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 14601–14643, 2009

Planetary waves in
the polar

stratospheres

S. P. Alexander and
M. G. Shepherd

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

the SSWs, as expected climatologically (Labitzke, 1981; Limpasuvan et al., 2004) and
observed e.g. during the recent Northern Hemisphere winters of 2003/2004 (Pancheva
et al., 2008b) and 2005/2006 (Hoffmann et al., 2007). Large amplitudes of the ground-
based westward propagating waves occur immediately prior to the large decrease in
zonal mean zonal wind, with maximum westward winds often occurring after cessation5

of large eastward wave activity. For all of the planetary waves recorded here, cx<u,
so all of these intrinsically westward propagating waves decelerate the eastward flow
(Holton, 2004).

During the 2007/2008 winter, 12DE1 and 16DE1 waves are superimposed upon
an SPW1 at 30 km (Figs. 10, 12 and 13). The amplitudes of the 12DE1 and 16DE110

drop sharply immediately prior to the onset of the major SSW in late February 2008
(Fig. 13e), consistent with the general development of an s=1 major warming (Labitzke,
1977; Krüger et al., 2005). Large SPW2 and an increase in 16DW2 occur during
the major SSW (Fig. 13g and h), although the peak SPW2 amplitude occurs in early
February.15

Unlike the winter of 2007/2008, during 2006/2007 the two largest amplitude E1
waves (in this case the 16DE1 and 23DE1) have their largest amplitudes at the time
when the other wave’s amplitude is relatively small. Nevertheless, both of these waves
decay rapidly in amplitude from late February 2007 (Fig. 13a) at the onset of the major
SSW, although not as dramatically as the decay in 2008. The s=2 components are20

<3 K throughout the winter of 2006/2007. Compared to 2007/2008, the 2006/2007
SPW2 activity is much weaker throughout all of winter.

The periods of the travelling planetary waves which account for nearly all of the to-
tal travelling wave activity are consistent with previous observations of SSWs. The
16DE1 wave was observed in the horizontal wind during the 2003/2004 SSW in the25

stratosphere and MLT region, with amplitude amplification prior to onset (Pancheva
et al., 2008b), consistent with the 2008 results in the low to mid stratosphere pre-
sented here. Palo et al. (2005) demonstrated the presence of a 10DE1 superimposed
upon an SPW1 at 30 km prior to the major Antarctic SSW of 2002, while Chshyolkova
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et al. (2005, 2006) found s=1 with periods of 20–30 days throughout the entire Arc-
tic middle atmosphere during winters 2000–2002. A westward 16 day wave was ob-
served throughout the stratosphere and mesosphere during the winter of 2003/2004
(Pancheva et al., 2008b), amongst other waves of periods 5–6 days, 10–12 days, 15–
17 days and 24 days (Pancheva et al., 2009b).5

Stationary planetary waves in both winters are also related to the warmings and their
amplification appears to play a role in causing some of the SSWs (Figs. 11 and 12).
The SPW1 during 2006/2007 has its largest amplitude during the first minor warming,
however, the peak amplitude during 2007/2008 is not co-incident with any warming.
The SPW2 exhibits large variability between winters. During both winters, its largest10

amplification occurs prior to the major SSWs and its amplitude reduces significantly
during the major SSWs. During 2006/2007, the SPW2 reforms immediately after the
SSW.

This analysis during the 2006/2007 and 2007/2008 winters illustrates the importance
of E1 waves in preconditioning the Northern Hemisphere stratosphere prior to the15

SSWs. However, the amplitudes and periods of these E1 waves vary between years
(Figs. 7a, 13a and e). Southern Hemisphere planetary wave activity is dominated by
the E1 and E2 waves which have largest amplitude during spring, co-incident in time
with the largest zonal wind speeds. Enhanced wave amplitudes descend in time in con-
cert with the descending zonal wind structure as the vortex decays during late spring.20

The presence of E2 waves with periods around 10 days at 60◦ S was noted at 10 hPa
(close to 30 km geometric altitude) in spring by Shiotani et al. (1990). E2 waves of
similar periods are also observed in the COSMIC data in each of the three springs
(Fig. 8c).

The COSMIC temperature s–ω power spectra of Figs. 3 and 4 agree with previ-25

ous observational and model analyses at similar altitudes in the mid-latitude North-
ern Hemisphere which used geopotential height or geostrophic wind (Fraedrich and
Böttger, 1978; Watanabe et al., 2008). Hayashi and Golder (1977) illustrated the
latitude-height differences of the geopotential, zonal, temperature and vertical pressure
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velocity components of planetary wave power spectra. The COSMIC results also agree
with the latitudinal structure of the temperature components presented by Hayashi and
Golder (1977).

To investigate the COSMIC spectra further, UKMO assimilated dynamical data on
the 100 hPa and 10 hPa isobars are studied (close to the 15 km and 30 km presented5

here). At 60◦ N–70◦ N, the resultant temperature s–ω spectra and the Hövmoller dia-
grams are nearly identical to Figs. 3 and 4 (not shown). Next, the UKMO geopotential
heights are considered. In this case, at 10 hPa and 100 hPa, a significant amount of
the E1 planetary waves are stationary, while E2 are mainly travelling. Larger variances
existed for the travelling W1 and W2 than for eastward components. These results10

are consistent with those of Speth and Madden (1983). We also note here that the
Hövmoller diagrams of the geopotential heights exhibit some differences to the temper-
ature Hövmoller diagrams (not shown). A full dynamical analysis of planetary waves
during 2007 and 2008 is possible with assimilated data such as UKMO, although it is
beyond the scope of the present study.15

7 Conclusions

Temperature data from the COSMIC GPS-RO satellite constellation are used to probe
the large scale structure and dynamics of the mid to high latitude stratosphere of both
hemispheres from September 2006 until November 2008 via a study of planetary wave
activity. During the boreal winters of 2006/2007 and 2007/2008, several sudden strato-20

spheric warmings (SSWs) occur, including a major one during each winter.
An overview of planetary wave activity during the period studied is presented using

space-time spectral analysis. This shows that there are more eastward propagating
waves than westward at 30 km and 60◦ N–70◦ N, with ω<0.10 cycles per day, |s|≤2 and
cx<20 m s−1. Large amounts of stationary wave activity are also present in the North-25

ern Hemisphere. At 60◦ S–70◦ S, most of the travelling wave variance is associated with
eastward propagating waves, with very little westward activity other than some s=−1.
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The shape of the wave spectra change with altitude, due to increasingly strong winds
higher in the stratosphere. Individual planetary waves are then extracted via a linear
least squares fitting routine and their vertical structure and periods examined. Most
of the large Northern Hemisphere wave activity is associated with the winter SSWs,
while the largest amplitude waves in the Southern Hemisphere occurred in spring, co-5

incident in time with the descent of the strongest zonal wind speeds during the vortex
decay phase.

Planetary wave activity during the SSWs is due largely to travelling waves with |s|≤2
having periods of 12, 16 and 23 days and to stationary waves with s=1 and s=2.
The SPW2 is amplified prior to both major SSWs and decays rapidly during the actual10

events. Amplitudes of the 23DW2, 23DW1, 23DE1 decrease significantly with onset
of the major SSWs during February 2007. For the major SSW in the following Febru-
ary, all planetary waves decay significantly, with only the 23DW1 reforming after SSW
cessation.
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Manney, G. L., Krüger, K., Sabutis, J. L., Sena, S. A., and Pawson, S.: The remarkable 2003–
2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s, J.30

Geophys. Res., 110, D04107, doi:10.1029/2004JD005367, 2005. 14603
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Table 1. Properties of major planetary waves at 30 km and 60◦ N–70◦ N during the 2007 SSWs.
A co-incident SSW is one that occurs simultaneously in time with the maximum planetary wave
amplitude, but does not necessarily imply causality.

Co-incident Time of Peak Wave τ and s cx Amplitude
SSW Amplitude (m s−1) (K)

– mid December 23DE1 9 8.0
Minor early January SPW1 0 15.0

– late January 16DE1 12 8.5
Minor early February 23DW2 –4 2.0

– mid February SPW2 0 3.0
Major late February 23DE1 9 5.0
Major late February 16DW1 –16 2.5
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Table 2. Properties of major planetary waves at 30 km and 60◦ N–70◦ N during the 2008 SSWs.

Co-incident Time of Peak Wave τ and s cx Amplitude
SSW Amplitude (m s−1) (K)

Minor early January 23DE1 9 4.0
– January SPW1 0 15.0
– mid January 12DE1 16 7.0

Minor late January 23DE2 4 3.0
Minor early February SPW2 0 5.0
Minor early February 16DE1 12 8.0
Minor early February 16DE2 6 3.0
Minor early February 16DW1 –12 4.0
Minor early February 23DW1 –9 5.0
Minor early February 23DW2 –4 3.0
Major early March 23DW1 –9 5.0
Major early March 16DW2 –6 2.0
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Fig. 1. (a) Temperature anomalies from the 28-month mean at 60◦ N–70◦ N and (b) normalized
temperature anomalies.
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Fig. 2. Same as Fig. 1 but for 60◦ S–70◦ S.
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Fig. 3. s–ω spectra for the period 1 November 2006 to 4 November 2008 at 30 km altitude
for 60◦ N–70◦ N (left hand column) and 60◦ S–70◦ S (right hand column). (a, b): all wave com-
ponents, (c, d) travelling components only. Negative s indicates westward propagation. White
lines mark ground-based phase speeds (units m s−1, positive eastward).
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Fig. 4. Same as Fig. 3 except at 15 km altitude.
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Fig. 5. The 60◦ N–70◦ N temperature amplitudes due to travelling planetary waves with discrete
periods τj (see text for details): (a) E1, (b) W1, (c) E2, (d) W2. UKMO zonal mean zonal winds

(white, units of m s−1, solid eastward) are also marked.
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Fig. 6. As for Fig. 5 except at 60◦ S–70◦ S.
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Fig. 7. Wavelet power spectrum for travelling planetary waves at 60◦ N–70◦ N: (a) E1, (b) W1,
(c) E2, (d) W2. The 95% confidence lines are marked by the solid white lines, while the cones
of influence are indicated by the white dashed lines (Torrence and Compo, 1998).
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Fig. 8. As for Fig. 7 except at 60◦ S–70◦ S.
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Fig. 9. Background state of the atmosphere during the Arctic winters of 2006/2007 and
2007/2008. (a) UKMO zonal mean temperature at 10 hPa (colour scale) with zonal mean zonal
winds (white, units m s−1, solid eastward) during 2006/2007; (b) zonal mean temperatures and
zonal mean zonal winds at 60◦ N–70◦ N during 2006/2007; (c) same as (a) but for 2007/2008;
(d) same as (b) but for 2007/2008.
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Fig. 10. Hövmoller diagrams at 60◦ N–70◦ N at 30 km during the Arctic winter of 2006/2007
(a–c) and 2007/2008 (d–f). (a, d) Temperature perturbation from zonal mean, (b, e) eastward
propagating waves, (c, f) westward propagating waves. White indicates missing data. The five
day smoothed UKMO zonal winds at the nearest pressure level (10 hPa) are marked in white
(units m s−1, solid eastward).
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Fig. 11. Latitudinal distribution of planetary wave amplitudes in the Northern Hemisphere at
30 km during 2006/2007 winter, with the various waves labelled in the titles. Note the varying
colour scales. The ordinate is latitude in degrees. The UKMO zonal mean zonal winds at
10 hPa are marked in white (units m s−1, solid eastward and dashed westward).
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Fig. 12. As for Fig. 11 except for the 2007/2008 winter.
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Fig. 13. Planetary wave amplitudes at 60◦ N–70◦ N and 30 km during the 2006/2007 winter (a–d) and during the
2007/2008 winter (e–h). SPW are shown in black on the E1 and E2 plots (left hand column), with SPW1 using the
scale to the right (a, e). The 8 day wave is marked dark blue (solid), the 10 day wave dark blue (dashed), the 12 day
wave dark green (solid), the 16 day wave dark green (dashed) and the 23 day wave red.
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